
Ia

{ REORT OCUENTAI9N AGEForm Approved
REPOT D CUM NTA PN AGEOMBNo.0704-0188

REPORT SECURITY CLASSIFICArIO lb. RESTRICTIVE MARKINGS
LRNCLASS IFIEDI I

2a. SECURITY CLASSIFICATION AUT r- 3. DISTRIBUTION /AVAILABILITY OF REPORT
0 in Approved for public release;

-- distribution unlimited.

.JMBER(M 5. MONITORING ORGANIZATION REPORT NUMBER(S)AD-A212 84 AF04i -Tft 89 -1 2 54,
I 6b. OFFICE SYMBOL 73. NAME OF MONITORING ORGANIZP:IION

(if applicable)

6c. ADDRESS ", State and ZIP ;C) S7b. ADDRESS (City, State, and ZIP Coc-)
e, 4A m'()q)~ocI(oy 4 e c Building 410

(vfU 4ir O ------------ ~~- Boiling AFB, DC 20332-6448

S&. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
0FS M (- 0 .

&-. ADDRESS (City, Stzt, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Building 410 PROGRAM PROJECT TASK WORK UNIT

Bolig PB D 233-648ELEMENT NO. NO. NO. ACCESSION NO.

61102F
2324S

11. TIT'.E (include Security Classification)

T4Pfilve e~is Fe Lme~ Ci---2enFA J kUI Ael g

12. PERSONAL AUTHOR(S)

13a. PSE OF REPORT 3bTIECVRD14. DATE OF REPORT (Year, Month, Day) 15S. PAGE COUNT
_ L FROM ISI, TOggg?

17. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continuet on reverse if ntecessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

A sparsity preserving IP-based SOft method for solving Classes of linea

complementary problems Including the case where the given mhatrix Is positive C,-~

semidefinite Is proposed. The LP subproblems need be solved only

approximately by a SOR method. .euristic enhancement is discussed. Numerical

results for a special class of problems are presented. which show that the

heuristic enhancement is ~very effective and the resulting program can solve

problems of more than 1"00 variables in a few seconds even on a personal

computer.! -..6 w , 'Y 0~~. K u~''v, -(. ' c (

E20 DISTRIBUTION /AVAILAILITY OF ABSTRACT
21. ABSTRACT SECURITY CLASSIFICATION

0 UN L SII DUL1T D 0 S M S R T TC U E S U C A S F E
22a. NAME OF RESPONAILE INDIVIDUAL 22b, TELEPHIONE (include Area Code) 22 , OFFICE SYMBOL

2 f I e11P1.^A J(0)77- 0gt

DDForm 1473, JUN 16 Previous editions art obsolete.si A

99, 2 7 2-5IG tit .

-To appear in Journal of Optimization Theory and Applications.

2 1 25 4

An LP-Based Successive Overrelaxation Met-hod

for Linear Complementarity Problems
1 '2

T. H. SHIAU
3

Communicated by 0. L. Mangasarian

ITERATIVE METHODS FOR LINEAR COMPLEMENTARY AND RELATED PROBLEMS

1This research was sponsored by the Air Force Office of Scientific
Research, Grant No. AFOSR-86-0124. Part of this material is
based on work supported by the National Science Foundation under
Grant No. MCS-82-00632.

2The author is grateful to Dr. R. De Leone for his helpful and
constructive comments on this paper.

3Assistant Professor, Department of Computer Science,
University of Missouri-Columbia, Columbia, Missouri

Abstract. A sparsity preserving LP-based SOR method for

solving classes of linear complementarity problems

including the case where the given matrix is positive

semidefinite is proposed. The LP subproblems need be

solved only approximately by a SOR method. Heuristic

enhancement is discussed. Numerical results for a special

class of problems are presented, which show that the heu-

ristic enhancement is very effective and the resulting

program can solve problems of more than 100 variables in

a few seconds even on a personal computer.

Key Words. Complementarity problems, iterative methods,

quadratic programming, successive overrelaxation methods.

AuceSOfl For

NTIS "RA&I
TIC TAB 0

Uniuiouiced 0
justtrioatio1

Ava i, Ity Codes

Avail and/or
Special

....... . .. --- -, - m~ml I ll f ~ l f ll/

1. Introduction

We consider iterative methods for solving the linear comple-

mentarity problem (LCP):

Find x in R x 0, Mx+q20, xT(Mx+q) =0 ()

where M is a given n-by-n real matrix and q is a giv=.i real n-

vector. The general LCP is NP-complete (Ref. 1) and therefore very

difficult to solve even for problems with moderate size, say n = 50.

However, in many applications the matrix M has some nice proper-

ties, e.g. M is positive semidefinite or all its principal minors

are positive (i.e. M is a P-matrix), and the problem can be solved

by some direct pivoting methods, e.g. the principal pivoting

method (Ref. 2) or Lemke's method (Ref. 3), or a semi-iterative

pivoting method by Shiau (Ref. 4).

Although a pivoting method gives a very accurate solution in

a finite number of steps, it i-:y not be suitable for some large

sparse problems. Since pivoting can easily destroy the sparsity

after a number of steps, 0(n 2) storage space is needed for the

pivoting even if M has only O(n) nonzero entries. Iterative

methods that preserve sparsity and work only on the nonzero entries

of the input data are much more attractive for very large prob-

lems, for the storage requirement is greatly reduced and the

processing could be faster.

2

Many iterative methods have been proposed (e.g. Refs. 5-9).

However, they were developed primarily for the case that M has

some kind of strict positivities. For example, Mangasarian's

algorithm (Ref. 9) converges when M is symmetric and strictly co-

positive, or copositive-plus and there exists an x such that

MX+q>O. In one of the most important applications where the LCP

is formulated for solving the underlying quadratic program (Ref. 2),

the matrix M is only positive semidefinite and not definite. (There

are special cases, e.g. the quadratic program is strictly convex

and separable, that existing methods may apply (e.g. Refs. 10-12)).

In this work, we present a sparsity-preserving iterative method

that can solve nonsymmetric LCP's when M is only positive semi-

definite.

We give a brief word about notation. The n-dimensional

Euclidean space is denoted by Rn . Vectors in Rn are column vectors

and denoted by x, y, z, etc. Superscripts are used to denote

different vectors such as x0 , x1 , but the superscript T denotes

T k T Tthe transpose, e.g. x . (x) , M

2. Method and Convergence Theorem

Let us consider first the following quadratic program:

0 = min f(x) subject to xcS, (2)

3

where f is a convex quadratic function, S is defined by a finite

number of linear inequalities, and 0 = f(x)<f(x) for some x in

S, for all x in S. The intension is to set S= {xlxa0, Mx+q 01

and f(x) = xT(Mx+q), then all the assumptions of f and S are

satisfied provided that M is positive semidefinite and the LCP

has a solution. In this setting, every solution of (2) is a

solution of (1) and vice versa. We present the following iter-

ative scheme and its convergence theorem. The proof of a more

general scheme can be found in (Ref. 4) and is very similar to

that In (Ref. 13). We include the proof here to make the pa-er

self-contained.

2.1 Iterative Scbeme

Step 1. Given x k S, stop if f(x k) k 0 (within a fixed tolerance).

Otherwise, find yk satisfying

y C S, f(x k) + vf(xk) T(yk xk)0 (3)

Step 2. Let pk = yk _ x k be the direction of search,

find xk + 1 = xk + tkPk

where tk is defined by

t k = arg minimize f(xk + tpk) (4)

Step Go to Step 1.

4

The computation of yk is discussed in the next section. Since f(x)

is quadratic, the objective function of (4) is a quadratic function

of t, in fact,

f(x k + tp k) f(x k) + (Vf(x) Tpk)t + t2 (pk)T72f(xk)p
k

ak + bkt + c kt2 (5)

Note that b -f(x)<O by (3), and that cl 0 by the convexity of

f(x). It is very easy to compute tk as shown by the following

lemma.

Lemma 2.1. Let g(t) = a + bt + ct 2 , where b<o, cao. Then

t f-b/c, if c >-b,

11, otherwise, is the minimizer of the following problem.

minimize g(t), (6a)

0 t:l (6b)

moreover,

g(0) - g(E) - b t. (7)

Proof the case c = o is trival. Suppose c>0.

So g'(t)<0 for 0t<-b/c, and g'(t)>O for t>-b/c. Therefore g(t)

is strictly decreasing on [0,-b/cl and increasing on [-b/c,+ -]. If

-b/c <1, i.e. c>-b, then t = -b/c solves (6) and it is straightforward

to see that (7) holds as an equality. If -b/c 1, then t = 1 is the

constrained minimum and

g(0)-g(l) = -b- c>-b/2

proving (7).

Theorem 2.1. Convergence Theorem. Assume that f(x) is convex and

k kquadratic, S is nonempty and 0 min f(x). Let {x ,yk} be generated
kX C

as in 2.1. If {y k} is bounded, then {f(x k)} converges monotonously

to zero.

Proof By Lemma 2.1,

f(xk) - f(x k+)- tk b k t kf(xk) (8)

where bk is defined in (5), and the last inequality follows by (3).

Summing up (8) for k = 0, 1,...,N, we have

f(x O) - f(xN +) tkf(xk)
k=O

Since the left-hand side is bounded for all N, the positive series

t kf(x k) converges. Hence
k=O

lim t f(xk) = 0 (9)k- k

By Lemma 2.1, tk is either 1 or tk = -bk/c k By assumption {yk

is bounded, so is {x k } since xk is a convex combination of x0 and

y J, j = 0, 1,...,k-1. Therefore, {c k } is also bounded.

• " -- - . -- ,,,,, m ,,,= n m m n U i i l iI I I Ik

6

So

t min {I, b k/V} min (1, f(x k)/V} (10)

where V is a bound of {Ck }. Since ff(xk)} is monotonously

decreasing by (8), if it did not converge to zero, then

f(xk) (5 > 0 for all k, for some 6. Then, by (10),

t kf(xk) min {i, f(x k)/V}f(xk) :min {5,6 2/V},

which contradicts to (9).

Corollary 2.1. If we set f(x) = xT (Mx+q), S = {xlx 0, Mx+q0},

where M is positive semidefinite. Assume S is nonempty and {yk I

is bounded, then lim d(x ,s) 0

where S is the solution set of (1), and d(x,S) is the distance

between x and S defined by

d(x,S) = inf~lx-yll
yES

Proof It follows by Theorem 2.1 and Corollary 2.1 of (Ref. 14),

which shcws that for xeS

d(x,S) <O(f(x) + /T-(x)).

The inequality in (3) can be considered as a cutting plane

kwhich cuts off part of S including the current point x , and the

remaining part still contains the whole S, because of the

convexity of f(x). In the case that M is not positive semidefinite,

but has other positivity properties such as that all principal

7

minors of which are positive, the scheme can be modified by a

weaker cutting plane which cuts off less than the one in (3)

does, so as to guarantee that yk exists, The new cut is defined

by

e kf(xk) + Vf(xk) T(x-xk) k 0

where ek !1 . The number 9k should be as large as is allowed

(for the existence of y k) to speed up the algorithm. For sim-

plicity of the paper, we omit this case and concentrate on that

M is positive semidefinite, thereby e k is always chosen to be 1.

k
3. Solving y By SOR

The main effort in the iterative scheme of 2.1 for solving
k

(1) is the computation of y satisfying (3). This is to find

a feasible point, in the k-th iteration, of the system of

linear constraints:

My + q 0, y 0, Vf(xk) T(y-x) -f(x k) (11)

Note that xk and y k- satisfy all but the last inequality, i.e.

the cut, and therefore they can be selected as startinq points

for solving y k. There are a few non-pivoting methods for solving

(11) which involve the inversion of a matrix in each iteration.

For example, by replacing the last inequality by equality, one

can easily employ the basic (single phase, no sliding variable)

Karmarkar method (Ref. 15) to:

Vf(xk) Tx k-f(x) T y

s.t. My + q - 0, y 0

8

We propose to use a successive overrelaxation method (SOR) which

needs no .atrix inversion and is sparsity-preserving (Refs. 16-18).

The name SOR is more commonly referred to the relaxation method

for solving systems of n linear equations in n unknowns (e.g. see

Refs. 19-20). The SOR for system (11) of linear inequalities is

different but similar.

3.1 SOR for Systems of Linear Inequalities

Problem 3.1: Find y in Rn satisfying ATY b, i = 1, 2,...,m,
1

where A~cR n , b.ER are given.
1 1

Algorithm 3.1 Step 1. Given z3, j 0-, stop if z3 satisfies (within

a tolerance) all the inequalities. Otherwise, pick the next

inequality which z violates, say ATYs b, compute
.

j+: z -AT)A. (12):= + ((i i)/ AI)A I

where 0<,,! 2.

Step 2. Go to Step 1.

In Step 1, the selection of the next violated inequality is

based on the cyclic order 1, 2,...,m, 1, 2,... One alternative

is to choose the one that z violates most, i.e. choose i so

that (b.-ATzI)/11 A.jj is most negative. The strict cyclic orderii I

can be relaxed to almost cyclic orrder defined as follows. Let

illi2 ,i , ... be the indices of the inequalities to be checked

for possible violation and relaxation (12), the order is called

almost cyclic if 1 , i., m, and

9

there exists an integer C such that {1,2,...,m}i,i+1.iZ+c

for all v:1. The strict cyclic order is almost cyclic with C = m

(Ref. 18). When P = 1, (12) moves zi along -A, to z j+ to satisfy the

i-th constraint. The constraint is said to be relaxed in the process.

It is an overrelaxation if i > 1, and an underrelaxation if w<i.

Theorem 3.1

Let y be any solution of the Problem 3.1, let {z'} be

generated by the SOR method (with an almost cyclic order or most-

violation rule).

(a) If 0<i<2, then jzJ+I-9y < jzJ-YI, and {zj } converges to a

solution.

(b) If there exists y such that AT Y< b. for i = 1,2,...,m,1 3.

then by choosing u = 2, the algorithm will find a solution in

a finite number of iterations.

Proof See (Refs. 16-18).

One can vary p in each iteration, say, choose . for the j-thJ

iteration. The conclusion of (a) remains true if O< !2 -
J

for all j for some e.

4. Computational Details and Heuristic Enhancements

4.1 Since SOR is an infinite procedure, we may not solve vk exactly.

However, we can get a point feasible to within a small tolerance

in a finite number of iterations. Since any solutions

10

of the LCP (1) satisfies (11), each SOR iteration moves the point

closer to the solution set by Theorem 3.1(a). The overall solu-

tion process is, therefore, applying the SOR iteration (12) until

the movement is small, followed by the line-search to find x

and updating the cutting plane, then resuming the SOR iteration.

If we select yk instead of xk + 1 as the starting point when SOR

restarts, then we have the monotonously decreasing of {d(zi, S)}

as well as {f(x k)}, where {zj } refers to all the points generated

by SOR which contains {yk } as a-subsequence.

4.2 When applying SOR, the n nonnegativity constraints x 0 can be

relaxed easily by replacing the negative components of zi with

zeroes or small positive numbers, for overrelaxation. Hence, they

can be relaxed as often as possible, i.e. every time any component

of zi becomes negative after relaxing one of the rest n+l con-

straints, that component can be made nonnegative. The convergence

of {zLY still holds, for the resulting order is almost cyclic

(defined in 3.1 with C = n(n+l)).

4.3 Heuristically, if a constraint xt 0 is violated very often,

we can set x. =0, thereby reduce the problem size. The reasoning

is that if {zj } converges to x and x. > 0 were nonzero, then z!

should also be positive for all but finitely many j. Similarly, if

w. I 0, where (w1 ,w2 ,...,w n)
T := Mx+q, is violated very often, we can set

- =0, i.e. solve (Mx+q) = 0 for some xZ and thereby eliminate var-

iable xZ and constraints x 0, w . 0. This clearly requires some

computation, but it can easily be justified if M is very sparse.

Since we also relax the nonnegativity constraints of x., x should

be chosen among only variables for which the current values are

sufficiently large. It is possible that we may erroneously set x.

or w. to zero, but we can easily back up by restoring the variables

and constraints. For example, if the decreasing of f(x k) becomes

unsatisfactorily slow after setting w. = 0 and removing x9 as a

consequence, we can compute the value of x by the equation w. = 0,

restore the constraints wi 0, x~ 0, and resume the computation of

x in the SOR iteration.

By similar arguments if a constraint x. 0(or w. 0) has not been

violated lately, we may set w. = 0 (or x. = 0).1 1

4.4 The line-search computes x k + as the minimizer of f(x) on

k kthe line segment with endpoints x and y.. We may do higher dimer.-

sional searches, e.g. by minimizing f(x) on the triangle with ver-

k k-1. k
tices x , y , and yk. This is not much harder than the line-

search since f(x) is quadratic.

4.5 Strictly speaking, yk does not satisfy (11) exactly, rather,

it satisfies:

yk e Sk := {yjMy + q + eke 0, y + ek e O},Vf(xk) T(y - xk)-f(x)

where E k > 0 is the tolerance in iteration k, and e is the vector

of ones. However, after replacing S in (3) by Sk, Convergence

Theorem 2.1 remains valid, i.e., we still have f(xk)0. Corollary
2.1 needs to be modified. If we choose Ek so that ek -0,we can still

have lim d(x ,s) = 0, by Theorem 2.7 of (Ref. 14).
k-*c

12

5. Numerical Results

A computer program is written on an IBM personal computer

(PC AT) for a special class of LCPs for which the matrix is of

the form:

dT
d 2 A T

M=

dN

-A r0-

where d. is either 1 or 0, and A is an N-by-E node-arc incidence

matrix in which there are exactly two nonzero entries per column,

a 1 and a -1. Any convex separable quadratic network flow pro-

blem with N nodes and E edges can be solved by such an LCP. The

major reason we choose this LCP in our numerical study is that

when the heuristic approach discussed in the previous section

decides to set some xi or wi to zero, it is very easy to do so

to reduce the problem size. For more general problems, it may

need more computational effort and storage space in doing that.

Beyond that, we see no significant difference for the iterative

method and its heuristics in solving LCPs with general sparse

positive semidefinite matrices. So the following results should

reflect the performance of the method not only for the special

problem, but also for the general problems.

13

Many problems have been tested, we include here output of

five runs of different problem size ranges and different methods

for choosing the tolerance in solving (11). The following remarks

explain what each column means. See Table 1-5.

Remark 5.1. (Column 1) All problems are solved in less than

seven iterations.

Remark 5.2. (Column 2) As stated in Section 2.1, the stopping

criterion is that If(x)l be smaller than a fixed tolerance, called

Initial Tolerance in each output, for which we use flq K /1000n
and find it satisfactory. The initial tolerance is also used in

solving (11) for the first y. In all except Table 2 for which

the same tolerance is used in each iteration in solving (11),

the tolerance is halved after each iteration. One extra iteration

is done to bring the infeasibility within "user specified"

tolerance, called Final Tolerance in the outputs.

Remark 5.3. (Column 3) The program is given the solution so that

it can compute the square of the relative error 2k -xl]/ 2

We choose to avoid computing the square root. Note that the

solution procedure is in no way dependent on the given solution.

In fact, the time for computing this column should not have been

counted.

Remark 5.4. (Column 4) In solving (11), a cycle is complete when

all of the n constraints w. O and the cut have been checked and
I

relaxed if violation is found.

14

Remark 5.5. (Column 5) This is the total number of changes of y

in solving (11). Therefore it is also the total number of times

of all constraints violated.

Remark 5.6. (Column 6) This is the clock that starts at 00:00.00

in each run. The first two digits are in minutes, the last two

are in hundreds of seconds.

Remark 5.7. Table 2 tells us that high accuracy cannot be achieved

without reducing the tolerance,-which is consistent with theoreti-

cal results of (Ref. 14). But when the tolerance is reduced

iteratively in Table 3, the computing time is increased greatly, so

is the number in Column 5. The latter means that many constraints

are violated many times, but then many w. and x. will be set to

zero by the heuristic enhancement criteria. The problem size can

therefore be reduced rapidly, that is reflected in Table 4 in which

the computing time is less than one percent of that in Table 3.

The same remarkable performance is found in Table 5, in which a

problem of the total of 116 variables is solved with relative

accuracy of 10-v in just 32 seconds--by a personal computer.

6. Additional Observations and Summary

In all our test problems of size more than 50, starting at the

second iteration all constraints violated more than 5 times turned

out to be active, and more than 90% of the active constraints are

violated more than 50 times in a single iteration. In other

words, the program has picked, without a single error, more than

90% of the active constraints in just three iterations. Assuming

15

the same performance, the method would solve problems of millions

of variables in minutes or seconds on mainframes or supercomputers.

The related problem of how to reduce the problem size for general

LCP while keeping as much sparsity as possible, when many of the

active constraints are known, becomes a very interesting problem

which we leave to the future.

16

Table 1. Output By LCPSOR, no heuristic enhancement.

Square of Number of No. of SOR Clock
Iteration f(x) rel. error cycles iterations

0 67.136070 2.808698E-01 3 13 00:00.05

1 10.586370 1.373864E-02 5 23 00:00.16

2 0.608786 8.386110E-05 17 112 00:00.49

3 -0.000018 2.790467E-09 28 190 00:01.04

4 -0.000044 1.886973E-13 53 321 00:02.09

Number of nodes = 3; Number of edges = 4.

Initial tolerance = 0.004000; Final tolerance = 0.000005

17

Table 2. Fixed tolerance, no heuristic enhancement.

Square of Number of No. of SOR Clock
Iteration f(x) rel. error cycles iterations

0 2369.166000 1.815431E-01 4 46 00:00.33

1 348.715500 1.577661E-02 6 92 00:01.10

2 19.965990 2.935577E-03 63 848 00:07.36

3 3.917515 7.512022E-04 314 4235 00:37.79

4 0.291592 1.806640E-04 747 7048 01:46.11

5 0.108357 1.318387E-04 280 1678 02:10.45

6 -0.082139 1.292340E-04 25 129 02:12.75

7 -0.082139 1.292340E-04 0 0 02:12.92

Number of nodes = 20; Number of edges = 38.

Fixed tolerance = 0.012897

18

Table 3. Reducing tolerance, no heuristic enhancement.

Squa~re of Number of No. of SOR Clock
Iteration f(x) rel. error cycles iterations

0 2369.166000 1.815431E-01 4 46 00:00.33

1 349.100200 1.576520E-02 6 94 00:01.10

2 20.196930 2.908019E-03 74 1211 00:08.73

3 4.116029 7.416783E-04 513. 8657 01:00.91

4 0.738284 7.504172E-05 1807 32150 04:06.95

5 0.106307 2.941542E-06 4287 69869 11:19.48

6 0.004395 8.453883E-08 5070 70660 19:25.02

7 0.000147 7.029873E-11 10185 195481 37:23.54

Same problem as in Table 2.

Initial tolerance = 0.012897; Final tolerance =0.000005

19

Table 4. Output By LCPSOR with heuristic enhancement.

Square of Number of No. of SOR Clock
Iteration f(x) rel. error cycles iterations

0 2369.166000 1.815431E-01 4 46 00:00.44

1 349.100200 1.576520E-02 6 94 00:01.43

2 20.196930 2.908019E-03 74 1211 00:10.77

3 3.963225 4.940340E-04 18 82 00:11.26

4 0.338470 2.348035E-06 39 216 00:12.25

5 -0.002658 8.072329E-11 93 434 00:13.73

6 -0.000023 1.349873E-14 98 422 00:14.21

Same problem, same initial and final tolerance as in Table 3.

20

Table 5. Output By LCPSOR with heuristic enhancement.

Square of Number of No. of SOR Clock
Iteration f(x) rel. error cycles iterations

0 3990.690000 1.634287E-01 8 113 00:01.32

1 627.943400 1.455267E-02 6 159 00:03.19

2 40.228890 3.347591E-03 71 2540 00:21.31

3 7.471679 2.231230E-04 14 130 00:21.97

4 0.767882 2.733713E-06 36 436 00:23.51

5 0.010428 5.249066E-09 123 1146 00:26.75

6 0.000015 4.992850E-14 200 1784 00:31.91

Number of nodes = 40; Number of edges = 76.

Initial tolerance = 0.011388; Final tolerance = 0.000005

21

References

1. CHUNG, S. J., and MURTY, K. G., Polynomially Bounded Ellipsoid

Algorithms for Convex Quadratic Programming, Nonlinear Pro-

gramming 4, Edited by 0. L. Mangasarian, R. R. Meyer, and S. M.

Robinson, Academic Press, New York, New York, pp. 439-485, 1981.

2. DANTZIG, G. B., and COTTLE, R. W., Positive Semidefinite Pro-

gramming, Nonlinear Programming, Edited by J. Abadie, North-

Holland Publishing Company, Amsterdam, Holland, pp. 55-73, 1967.

3. LEMKE, C. E., On Complementary Pivot Theory, Mathematics of

the Decision Sciences, Part 1, Edited by G. B. Dantzig and

A. F. Veinott, American Mathematical Society, Providence,

Rhode Island, pp. 95-114, 1968.

4. SHIAU, T. H., Iterative Linear Programming for Linear Comple-

mentairity and Related Problems, University of Wisconsin,

Madison, Wisconsin, Computer Sciences Department, Ph.D. Thesis,

1983.

5. AHN, B. H., Solution of Nonsymmetric Linear Complementarity

Problems by Iterative Methods I, Journal of Optimization

Theory and Applications, Vol. 33, pp. 175-185, 1981.

6. CHENG, Y. C., Iterative Methods for Solving Linear Complemen-

tarity and Linear Programming Problems, University of Wisconsin,

Madison, Wisconsin, Ph.D. Thesis, 1981.

7. COTTLE, R. W., GOLUB, G. H., and SACHER, R. S., On the Solution

of Large Structured Complementarity Problems, Applied Mathe-

matics and Optimization, Vol. 4, pp. 347-363, 1978.

8. CRYER, C. W., The Solution of a Quadratic Programming Problem

Using Systematic Overrelaxation, SIAM Journal on Control,

Vol. 9, pp. 385-392, 1971.

22

9. MANGASARIAN, 0. L., Solution of Symmetric Linear Complementarity

Problems by Iterative Methods, Journal of Optimization Theory

and Applications, Vol. 22, pp. 465-485, 1977.

10. COTTLE, R. W., and DUVALL, S. G., A Lagrangian Relaxation

Algorithm for the Constrained Matrix Problem, Stanford Uni-

versity, Stanford, California, Systems Optimization Laboratory

Report 82-10, 1982.

11. HAN, S. P.,and MANGASARIAN, 0. L., A Dual Differentiable Exact

Penalty Function, Mathematical Programming, Vol. 25, pp. 293-

306, 1983.

12. PANG, J. S., On the Convergence of a Basic Iterative Method

for the Implicit Complementarity Problem, Journal of Optimization

Theory and Applications, Vol. 17, pp. 149-162, 1982.

13. FRANK, M., and WOLFE, P., An Algorithm for Quadratic Programming,

Naval Research Logistics Quarterly, Vol. 3, pp. 95-110, 1956.

14. MANGASARIAN, 0. L., and SHIAU, T. H., Error Bounds for Monotone

Linear Complementarity Problems, Mathematical Programming,

Vol. 36, pp. 81-89, 1986.

15. KARMARKAR, N., A New Polynomial-Time Algorithm for Linear

Programming, Combinatorica, Vol. 4, pp. 373-395, 1984.

16. AGMON, S., The Relaxation Method for Linear Inequalities,

Canadian Journal of Mathematics, Vol. 6, pp. 382-392, 1954.

1,. MOTZKIN, T. S., and SCHOENBERG, I. J., The Relaxation Method

for Linear Inequalities, Canadian Journal of Mathematics,

Vol. 6, pp. 393-404, 1954.

23

18. CENSON, Y., and LENT, A., A Cyclic Subgradient Projections

Method for the Convex Feasibility Problem, University of

Haifa, Mt. Carmel, Haifa, Israel, Department of Mathematics

Technical Report, July 1980.

19. ORTEGA, J. M., Numerical Analysis, A Second Course, Academic

Press, New York, New York, 1972.

20. VARGA, R. S., Matrix Iterative Analysis, Prentice Hall,

Incorporated, Englewood Cliffs, New Jersey, 1962.

